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DIFFUSION OF THE SELF MAGNETIC FIELDS OF AN ELECTRON BEAM
THROUGH A RESISTIVE TOROIDAL CHAMBER

I. Introduction
Extensive work has been done in the past on the diffusion of external

magnetic fields into hollow circular cylindrical conductors of infinite

1-5

length and also on the diffusion of the self magnetic field of beams out

6-9

of hollow cylinders. The beam self magnetic field diffusion studies

have also considered the effect of the diffusing fields on the beam

dynamics and have furnished interesting results on the beam stability6'8

9

and beam trapping.” However, these studies are linear and the expressions

for the fields are valid only near the axis of the cylinder.

Following the installation of strong focusing windings in the NRL
modified betatron accelerator it is routinely observed that for several

combinations of injection parameters the injected beam consistently spirals

from the injection position to the magnetic minor axis and is trapped.10’11

Attempts to explain this interesting phenomenon using the existing linear

resistive model have been unsuccessful.11

9

The decay rate predicted by the
linear theory” for the parameters of the experiment is at least 10-20 times
longer than that observed in the experiment, even when wake field effects

are taken into account.12

9,12 that assumes the beam to be

In contrast to the analysis
near the minor axis, the beam in the experiment during injection is at
least temporarily near the wall. In addition, the geometry of the NRL

10

device is toroidal ™ and not cylindrical and, therefore, there are

additional characteristic time55 that may modify the diffusion process.

The present work extends the results of the linear theory. The
expressions for the diffusing fields are valid not only near the axis but

almost over the entire cross-section of the chamber and toroidal effects

Manuscript approved April 24, 1992.




are' included to lovest order. The results have been obtained under the
following assumptions. Pirst, it is assumed that the torpidal vacuum
chamber has a small aspect ratio, i.e., the results are valid prcvided that -
the ratio of the minor to the major radius is much less than unity and the
radial distances of the observation point from the minor axis is
considerably smaller than the major radius of the torus. Second, since the
results are confined in the vicinity of the toroidal cihamber, propagation
effects Jo not play any role, i.e., the displacement current is omitted in
Maxwell’s equations. Third, in order to obtain tracktable analytical
results, it is assumed that the conducting wall is thin, i.e., its
thickness is much smaller than the minor radius of the torus. In this
case, the analytical results are not valid very near the conducting wall.
In the limit when the ratio of the wall thickness to the minor radius of
the torus tends to zero, i.e., for a toroidal conducting shell, the
analytical results are exact everyvhere inside of the toroidal vessel.
Finally, the analytical results on the beam dynamics are further simplified
under the assumption that the current ring moves slowly in comparison to
the fastest of the characteristic times that dictate the diffusion process.
Under the assumptions mentioned above, it is found that there are
three characteristic times with which the magnetic field leaks out of a
resistive torus, vhen a current ring turns on at t = 0 inside the torus.
The shortest is the "plane" or "fast" diffusion time Tpp = uoc(b-a)zlu2 ’
wvhere ¢ is the wall conductivity, a and b are the inner and outer minor
radii of the conducting wall and Mo is the permeability of the vacuum. The
terms associated with Tpp 2re responsible for the electric field to be zero
at t=0 outside the torus since no leakage has occurred as yet. The
"ecylinder™ diffusion time Q= uoc(b-a)a/z together with Tep determines the

speed with vhich the fields penetrate the wall chamber so that the images




of these fields gradually disappear. Finally, the "loop" diffusion time
Too = 27 [tn (8r_/a) - 2], vhere r, is the major radius of the torus,
determines the speed with which the fields diffuse into the hole of the
doughnut and is responsible for the gradual disappearance of the wall
current. It turns out that the radial component of the self magnetic
field, vhich is responsible for the beam trapping in the MBA, is
independent of o0’ and, therefore, the "loop" diffusion time does not play
any role in the resistive trapping of the beam. The expressions of the
fields predicted by the present work have been used to compute the beam
centroid orbit and several other trapping parameters measured in recent

13 in the NRL modified betatron accelerator.

detailed beam trapping studies
The shape of the computed orbits is very similar to those observed in the
experiment.

In Section II, the diffusion problem for a current ring inside a
toroidal conductor is formulated. In Section III, the vecfor potential for
a current ring in the absence of the conductor is derived. This is the
particular solution of the problem. In Section IV, the homogeneous
solution inside and outside the torus (but not inside the conductor) is
derived in toroidal geometry. The toroidal geometry removes the ambiguity
on the value of certain constants associated with the logarithmic
dependence of the solutions. In Section V, the initial conditions are
established that determine the time-dependent arbitrary parameters in the
homogeneous solutions. In Section VI, the solution inside the conductor is
derived and the boundary conditions are applied. The vector potential is
computed in the three regions inside and outside the torus and inside the
conductor. In Section VII, approximate results are obtained under the
assumption of a thin conducting wall. Section VIII contains exact analytic
results for the shell model and Section IX provides a summary of the main
results and lists the most important conclusions of the present study.

3




II."-Formulation of the Diffusion Problem

The configuration and system of coordlnates is showvn in PFig. 1. The
toroidal chamber has a major radius r,» an inner and outer minor radius a
and b, respectively, and conductivity o¢. In theiﬁresence of an external
driver, namely, a current ring which is axisymmetric, time-dependent and is
located inside the torus, the magnetic vector potential in that region is

determined by the equation

$xdxgin. . uoj, (1)

vhere the vector potential % has only one nonzero component Aé? that

depends only on the cylindrical components (r,z) and on time. The current
density 7 of the current ring has only one nonzero component Je vhich is
equal to Je = Ic/nri inside the ring and zero outside it. Here, Ic is the
ring current and r. is its minor radius.

The magnetic field inside the conductor is determined from the vector

potential £°°" that is described by the diffusion equation

on agcon
LERED S Y (2)

vhere, again, £°°" has only one component Acon, vhich depends on (r,z) and
e

on time. Finally, the vector potential outside the torus is determined by

the homogeneous equation

$x¥x2V .o 3)

out

vhere the component Ae of gout depends on (r,z) and on time. The

magnetic and electric field components, in each region, are given by




B=-5> (4a)
orA
1 C)
Tl T - - n
oA
-]
Ee = - F' (60)

vhere Ae is one of the components defined above, depending on the region of
interest. Notice that Eq. (2) is identical to Ampere’s lav combined with
Ohm’s lav inside the conductor.

It is convenient to express the vector potential and the fields in
terms of the local cylindrical coordinates (p,$) vhich are related to the

global cylindrical coordinates (r,z) by:

r = r, + pcosé, (5a)

z = psiné. (5b)

Then, in the region inside the conductor, Eq. (2) reduces to

aAcon aAcon

1 g WM a%alM cose =2 - sing L - ¢°
i e i v il 5 e
e 9p 9p o’ 3¢ r, + pcos ¢

con con

A %A
- —2 7 =+ M¥ o )

(r, + pcos¢)
con

after taking account of the fact that Ag is independent of the toroidal

angle 6. Also, in the local coordinate system Eqs. (4a), (4b) are replaced

by
p ._1%e _ sine , a)
p- " p o¢ r, + pcosé O’




9A
(-] cosé A

B# "% ° I +orosé

o' (7b)
vhile Eq. (4c) remains the same.
At the surface of the toroidal conductor, i.e., at p = a and p = b,
the tangential components of the electric and magnetic fields are
continuous. Therefore, in the local coordinate system, the boundary

conditions are:

) Eg" (0 = 2, $t) = E°" (5 = a, 4,1, (8a)
Eg'* (p = b, $,t) = ES™ (p = b, #,1), (8b)
By (p =3, $,0) = B (o = 8, #,0), (8¢)
Be'' (o= b, 4,t) = BY™ (o b, 4,1). (8d)

Since the vector potential is zero at t = 0, the first two boundary

conditions can also be expressed as

Ag" (o =8, $,t) = A2" (5 = a, $,1), (92)
49" (o= b, #,t) =~ A" (p = b, 4,1). (9b)

Thus, the diffusion fields in the three regions inside and outside the
torus and inside the conductor are determined by the solutions of Egqs. (1),
(3) and (6) with the boundary conditions given by Eqs. (9a), (9b), (8c) and

(8d) on the inner and outer surface of the toroidal conductor.




III..Vector Potential of a Current Ring

In this section, an approximate cxprihsion for the vector potential of
a current ring external driver is obtained. This is the particular
solution of Bq. (1). For that purpose, the toroidal coordinate system
associated with the current ring is used. Toroidal coordinates are most
appropriate for a toroidal conductor and their significance will become
evident in the next section vhen the arbitrariness as to the value of
certain constants in the solution is removed.

The global cylindrical coordinates (r,z) are related to the ring

toroidal coordinates (n,&’) by:

sinhy’
re=b, coshn’ - cos &'’ (10a)
z=b sing’ (10b)

¢ coshn’ - cos &'

vhere bc is a constant. These relations can be easily inverted, namely:

-2 (r - bc)2 + z2
e - i 7 (118)
(r + b )" + 2
c
Meos & =} (1-29) 4 1+ &)e2 (11b)
e ' cos -3 -5 +3 + e ’
e sin & - %; (1 - e-ZH')_ (11e)

According to Eq. (lla), when n’ is fixed, the coordinates (r,z) describe a
circle vhose radius is bc/sinhn'. If for n' = n'c this circle coincides
with the current ring surface whose major radius is Rc’ then it is

straightforvard to show that bc = [Ri - ri]l/z. The points (n',E&’) outside




the:ring are determined by the inequality n’ < L vhile the points inside
the ring are determined by 0’ > n.. '

In the absence of the toroidal conductor, the solution of Eq. (1) for
2

a current ring wvith constant current density Je -"Ic/nrc is equal to
ext uoIc cos(6’ - ") .3
Ae - ry y d'x", (12)
4n r. x' - x"

v

vhere X’ and X" are the observation point and 8 point inside the ring,

respectively,, and the integration is over the volume V of the ring. The

Green’s function of IQ' - f"l'l, in toroidal geometry is equal to 14
ry 1 reml u% (cosh n’ - cos £')1/2(cosh n" - cos E")llz
jxr - x"| ¢

2 | T(-ne)
*Z € 6 (-1) — cosn(©’-0")cosm(&’'-E")
n, n=0 r( .4‘“+5)

n ’ n . ’
*{ P. - 172 (cosh ) Q- _ 1/2(¢03h n";:; " >n }’ (13)

" (cosh ") Q" (cosh n’); n" < w

m- 172 a-1/72
vhere € = 1, & - 2vhenm=1, 2, 3, ..., I(x) is the gamma function, and
n
P - 172
of the first and second kind, respectively. Without giving the details of

(cosh n), 0: - 1/2 (cosh n) are the associated Legendre functions

the calculation, substitution of Bq. (13) into Eq. (12) leads to

the folloving expression of the vector potential of the current ring:

A;Xt = bc(cosh n’ - cos E')llz :E: ema:Xt 0: - 172 (cosh ') cos m &'

m=0




: [}

+ bc(cosh n’ - cos E')l,2 Zs-c:m P: - 1/2 (cosh n’) cos m &',
n=0

(14a)

inside the current ring, i.e., vhen n’ > n'c, and

t
Ag" - bc(cosh n - cos E.')1/2 Z tnb:"tPl - 1/2 (cosh n’) cos m &',

n
n=0
(14b)
outside the current ring, i.e., wvhen n’ < n'c, vhere
4 Ib ’
ext [ 1 1 2 dan"
ay = - ——3112: 2 ?—-—lJ- Pn - 1/2 (cosh “")°m - 1/2 (cosh n") Hﬁﬁﬁ’
c 4 3,
'lc
(15a)
&/2u I b ®
ext ocec _1 1 2 dan"
““ "" 32,2 2.1 ‘[ O _ 12 (cosh Q4,5 (cosh W) Sk
c T4 3,
n
(15b)
4&/2u I b ©
ext —occ _1 1 2 —dan"
bn = - 3u2 . 2 ﬁi l J Qm - 1/2 (COSh N")Qm - 1/2 (COSh N") Sinh nﬂ’
[ T4,
n
[
(15¢)

and "é = ¢n [(Rc + I, ¢+ bc)/(Rc +r, - bc)]. In the derivation of Eqs.

(14a), (14b) from Eq. (12), use was made of the identity 14

cosm E" _ 42 2
r " wy9/2 dg" = 2 an - 172 (cosh n"). (16)
(cosh n" - cosE") 3 sinh°n

(o]




‘'The toroidal functions P: -1/2 (cosl.x. n) and 0: - 1/2 (cosh n)

appearing in Eqs. (13), (l14a), (14b), (15a), (15b) and (15c) are given by

the following exact expressions: 15

(m-n-Pn

n
Ba - 172 (eosh W = =B (sinh m"

n / T(m - n + f)

1 1
m-1 (n + f) (n-m+ f)
*(1-8) E > 8 - 2N

s=0

s! (1 - ln)s

1
(-1)"2“*1r(m+n+%) - (me3)h

+ ~ (sinh n)"e
/2 'T(mel)
® %) (m+n+—)
Z J‘A‘:’s S ¢~28N [ﬂ.n (4e™ + gt U - Ve T
S=

-2 2r(menid)

n n

O - 172 (cosh ™) = T(m+1) (sinh m)
1 1

- (m+n+%)n (n+§)s(m+n+2)s - 2sn

*e e

s!(n+1)s !
S=0
vhere

(a)s = a(a+l)(a+2)...(a+s-1), (a)o

n
u, = 1
2

k=1

[ U

bl

10

avnvs]’

(17a)

(17b)

(18a)

(18b)




- 1 -
o ) TR Yo O (18¢)
k=1
For m=0, the first term in Eq. (17a) is omitted, Qince snn:' 1 for m = n,
and ahn = 0 for m # n. The expressions above are appropriate for the
region inside as well as outside the torus but on its vicinity.
Up to this point, the results given above are exact. In the
ext

folloving, an approximate expression of Ae will be obtained from Egs.

(l4a) and (14b) under the assumption of a small aspect ratio rc/Rc of the

’

current ring by keeping terms up to order e €. Notice that, when rc/Rc

<< 1, then to first order in the aspect ratio, or to first order in the

_n'
toroidal corrections, wve have the approximate relations: bc = Rc’ e ©

= rc/2Rc and e'n' = p'/2Rc. Here, (o', ¢’) are the local cylindrical

coordinates with respect to the ring position, i.e.,

r = Rc + p' cos ¢, (19a)

z = o’ sin ¢'. (19b)
Making use of the identity

(cosh © - cos E)1/2 . Z e, D, (n') cosm E, (20)
M=0
vhere
’ <In? -n’
D,(n) = f"% e (1472 [0_ 172 (cosh n’) - i:aT"' Q, /o (cosh n')].
(21a)
11




D (') = 2"—?; " (147" [0, ;,p(c08h n')

_n' .
e - -
- I:;:iﬁr 6@n-1/2 (cosh n’) + 0m+1,2(cosh n'))]’ (21b)

and also of Bq. (17b), a straightforward calculation leads to the

approximate expression, to first order in toroidal corrections,

bc(cosh n - ¢:os€.')1/2 :z: enaSXt 0: —1/2 (cosh ) cos m &/
M=0
u N’

The number of terms kept on the right hand side of Eq. (22) was determined

by the fact that the quantities bc ‘:xt are of zero order in toroidal

corrections, as is indicated by Eqs. (15a), (17a) and (17b). Similarly,

ext ext 2 _-2(m+1)VW
the quantities bc bm and bc ¢, are of order (bc/rc) e or
(b /r.)" e and, consequently, we have the approximate expression

[ -]
bc(cosh n - cus&'.')]'/2 :E: emb:Xt P; - 1/2 (cosh n’) cosm §’
M=0

; g b [b‘;’“ (en (4e") - 2)

- 65" (en (4e") - 2) €™ cos & - T M cos & ], (23)
to first order in toroidal corrections. The same relation above holds for
ext
o
From Eqs. (l4a), (14b), (19a), (19b), (22) and (23), it follows that

the quantities bcc

in the local coordinate system (p’, ¢’) of the current ring and to first
order in rc/Rc’ ve have inside the ring, i.e., vhen p’ ¢ r.:

12

— ]




ASXt o _ R p (8%t _ % (azxt -3 a:xt:] g';osg']
c

(] 2/5 ¢ (.}
V2 ext 8R. C:Xt p’ cos¢’ l"c.zws"
- 2n Re|% (£n7-2]+ ) R, ~  R.#
ext
c 8R R _cosé¢’
e T e 2T e
c
vhile outside the ring, i.e., wvhen o’ r.,» ve have:
ext V2 ext B8R, b:n p’cos¢’ rczcos¢'
Ag " = - 7 R IV [tn7-2]+ 2 R, - R ¢’
pext , 8R R_cos¢’
et T a) e ST am
c

Next, we need the approximate expressions, to first order in tc/Rc,

for the quantities Rc‘m t, Rcc;"t and Rcb:n, vhen m = 0, 1. From Egs.

(15a), (15b), (15¢), (17a), and (17b), it is easy to shov that

V2 ul 8R 2 8R
ext o ¢ e 3 (el —c_3
Rcao £ - ——— [zn —-5- (r ] [en = 2]], (25a)
" [ (J
: S V2 ul 2
Y [(%) - 1], (25b)
én c
R Xt 2 1 (;L']z (25¢)
c%o =7 W e c ’
5v2ul b
ext 0 C [
Ry =% 2.2 (25d)
c C

13




Rcb:n & - -/% ¥y Ioo - (25¢)
2
5VZul
ext O C C o B
RE® o« — Ot —c-] . (25£)

Substitution of Eqs. (25a) through (25f) into Eqs. (24a) and (24b)

ext

leads to the following expressions for Ae to first order inr c’Rc in the

local coordinate system of the ring:

] 8R 2
ext o c_3_1 (¢
Ag '2u1c[mrc'2'2[tc]]
1} 8R 2
2 p’'cos¢’ c 1 (p
-1, R [zn = 3-3 (‘c) ], (26a)

vhen p’ £ Tos and

u 8R
ext [+] C
Ae = I Ic [tn o 2]

u 8R
o p'cos¢’ c _ 1 (rc
-1, R, [r.n =€ -3-; p,) ], (26b)

vhen p’ 2 re- Let (4, a) be the ring position in the local cylindrical
coordinates of the toroidal conductor (cf. Egs. (5a), (5b)). Then, in the

relation above, Rc, p’ and p’cos¢’ are replaced by

Rc =I, + 4 cos o, (27a)
172
o = [p2 + 82 -2 pbcos (¢- c)] . (27b)
o’ cos ¢ = pcos ¢ - A cos a. (27¢)
14




-~ .Equations (Z6a) and (26b) are useful in the diffusion problem of a
current ring inside a toroidal conducting'bhell vith first order toroidal
corrections. This will be reported elsewhere. Here, only the zero order
solution to the diffusion problem is considered. In this case, the vector

potential of the current ring, in the absence of the conductor, is equal to

u 8r 2
ext 0 0 3 1 (g
Ago = 71 Ic [‘“ i (‘c) ]' (28e)

inside the ring, and

] 8r
At - 52 I, lﬂ.n =2 - 2], (28b)

outside the ring. Equation (28b) can also be written as:

u 8r

ext 0 [s)
Ago = 71 Ic (‘“T-z)
u 2
- > I tn [1 . (%] -2 %cos ¢ - a)]. (28¢)

This expression of the ring vector potential is used in the application of

the boundary conditions at the inner surface of the toroidal conductor.

15




IV. " -Homogeneous Solution of the Vector Potential

Inside the torus, the most general solution of Bq. (1) is

AR L ASXt, agl, ) @9

vhere Az; is the homogeneous solution of Eq. (1). The exact homogeneous

solution can be expressed most appropriately in toroidal coordinates with
respect to the toroidal conductor rather than the current ring. For that
purpose, ve replace §’, n’, bc by Ei’ N bi = [ro2 -az ]1/2, in Egs.
(10a), (10b), (11a), (11b), and (1llc). WVhen ni = nic’ vhere nic -

enf(r, + a + b))/ (r + a - b;)], the coordinates (r, z) describe a circle
vhich coincides with the inner surface of the toroidal conductor. In terms

of the toroidal coordinates (“i’ &i), the exact homogeneous solution of Eq.

(1) inside the torus is

Az; = bj(coshnj - cosEi) I/ZZE: enon i 172 (coshni)
M=0
*[in(c) cosmg; + En(s) sinmii]. (30)

For small aspect ratio a/to, and, to lowest order in this ratio, wve have
the appproximate relations:

ﬂic "(ni + iii)

b, =r, e = a/2r and e s pe-i¢/2to,

o
vhere (p, ¢) are the local cylindrical coordinates with respect to the
toroidal conductor (cf. Eqs. (5a), (5b)). Moreover, if it is assumed that
each of the coefficients bii;(c), biiﬁ(s) is of order (rola)m, then it
follows from Eqs. (17b) and (30) that the homogeneous solution of Eq. (1),

to zero order in toroidal corrections, is equal to

16




in ' = nt/2r (m + %) N n
Agno= - by :E: 2 17 2]
= R 2 (e 1) ¥

_(¢) _(s) ' -
* a, cosmé + a, sinmé|. (31)

By redefining the coefficients Esc), il(s), in terms of the zero order

coefficients e, 8 (c)’ ass), ve conclude from Eqs. (29) and (31) that the

n
most general solution inside the torus (inside and outside the current

ring) and to zero order in toroidal corrections is

Ajég - g:;t +a + Z (f)- [a:lc) cosmé + al(.s)s:lmu ] (32)
m=1

The undefined coefficients 8, a;c)’ a:s) vill be determined from the

boundary conditions.

The homogeneous zero order solution Aé:o satisfies also the zero order

homogeneous equation

2

¢

P 2o .2

= 0, (33)

o =
c1q:
°

vhich follows from Eq. (1) by expressing it in the local coordinates of the
toroidal conductor (cf. Eq. (6)) and neglecting the terms with toroidal
corrections.

For the vector potential outside the torus, we define the toroidal
coordinates (no, Eb) in a similar fashion, i.e., wve replace &', W and bc
by &, N, by = [r,2 - b21'%, in Eqs. (10a), (10b), (11a), (11b) and
(11c). Vhen no = noc’ vhere noc = tn[(ro + b+ bo)/(ro +b - bo)]’ the
coordinates (r,z) describe a circle which coincides with the outer surface
of the toroidal conductor. In terms of the toroidal coordinates (no, Eb),

the exact solution of Eq. (3) outside the torus is

17




. -}
, 1
Ag"t = bo (coshl‘lo - cosEo)ll2 Z e-P- -1/ 2 (coshno)

Mm=0
* Dﬁ:c)cosntb + Sn(s)sinnib]. | ” (34)

As before, for small aspect ratio b/ro, ve have the approximate relations:

-n n, + 1%

bo =r., e o¢ o b/2ro and e °

= 2r°e1’/p. If it is assumed that
each of the coefficients b06:°), bos;(s) is of order (b/ro)-, then it
follows from Eqs. (17a2) and (34) that the solution of Eq. (3), to zero

order in toroidal corrections, is equal to

AT . [tn ?% - 2)b0+z 1[%)' [blgC)cosw + b{s) simu]. (35)
M=

Here, the coefficients G:c), Sm(s) have been redefined in terms of the zero
order coefficients bo’ b:c), b:s). These undefined coefficients will be
determined from the boundary conditioms.

It is apparent that Eq. (35) satisfies the zero order homogeneous
equation (33), but the solution of Eq. (33) does not provide all the
information included in Eq. (35). The most general solution of Eq. (33)
vhich is independent of the toroidal angle ¢ is equal to Co + 01 tnp vhere
Co and 01 are arbitrary constants. But Eq. (35) indicates that these two
constants are related to each other and their dependence on each other is
established only by solving the problem in toroidal geometry rather than
making some ad hoc assumption. For example, if we assumed that, at
infinite time, the vector potential outside the conductor is equal to that
of the current ring in the absence of the conductor, we would probably

obtain the correct relationship between Co and Cl, but this assumption

18




vould be imposed on the solution of the diffusion problem rather than

coming out naturally as a result from the solution.
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V. -.Initial Conditions of the Vector Potential

Vhen I , 4 and a are time dependent quantities, the coefficients a
o{, o), b, (%), and b{®) in qs. (32) and (35) are also time
dependent. Since outside the torus the vector potential is zero at t = O,
bo(t), bgc)(t) and b:s)(t) are also zero at t = 0. In addition, the vector
potential is zero at t = 0 inside the conductor. From the continuity of
the vector potential at the inner surface of the conductor and from Eq.
(32), it follows that the coefficients ao(t), asc)(t), a:s)(t) are not zero
at t = 0. Since the image fields constitute a zero order homogeneous
solution inside the torus, it is convenient to redefine the as yet
undetermined coefficients
aéc)(t), ais)(t) by subtracting the image solution from them, so that they
are zero at t = 0. As to the coefficient ao(t), in order that it becomes

zero at t = 0, it is convenient to redefine it by replacing it with ao(t) -

(u°/2u)1c(t) (¢n 8r°/a - 2). Then, Eq. (32) should be replaced by

in uo a 1
A&) (py#yt) = an Ic(t) [2(?,“ ;: + -2-)
2 2
_pT + B7°(t) - 2p B (t) cos (¢ - a(t)) (36a)
r
c

cen 1s (r;:gl)z

-2 29‘%1 cos (¢ - a(t))]
a

= m
+ ao(t) + Z (f] [a:lc)(t) cosmé + ags)(t) simn#],
M=

20




inside the ring, and

"
Moo (pr#t) = 22T () 2t 2 (36b)

- a1 o (M0)° | 2 A couy - o)

. u,[1 . (’%Q_]z -2 888 o5 (4 - a(t))]]

+ 8 (t) + Z (f).[a£°)(t) cosné + a{®)(t) sinn¢],

n=l

outside the current ring but inside the torus. The vector potential from
the image has a logarithmic singularity at the image position (azlA(t),
«(t)), which lies outside the inner surface of the conductor. Therefore,
inside the torus, it is a zero order homogeneous solution of Bq. (33).

Vhen A(t)/p < 1, Bq. (36b) is equivalent to

|1
Ago (pr#t) = 2 I (1) [tn 2

Y LA (@ ) e o o]

m=1

- m
+a (t) + Z(f] [a:'c)(t) cosm¢ + al%) (1) simo], (37)

m=1

vhere ao(t), a:c)(t), a:s)(t) are zero at t = 0. The zero initialization
of these coefficients will lead to simple expressions when the boundary

conditions will be applied in the next Section.
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VI.:.Diffusion Fields Inside and Outside the Toroidal Conductor

In order to compute the fields, the zero order diffusion equation must
be solved inside the conductor and the boundary conditions be applied on
its inner and outer surface. The zero order diffusion equation is obtained

from Eq. (6) by omitting the toroidal corrections, namely,

con con con
}.3_,“&,,1“90-,,,“90.0 (38)
p dp p 2 302 o at
In general, let
£(p) = If(t) e Pt g, (39)

be the Laplace transform of f(t). Then, in the Laplace transform domain,

Bq. (38) becomes

80 -uep ;COI’I - o, (‘o)

vhere Ag:n (p,$,t) vas assumed to be zero at t = 0. The most general

solution of Eq. (40) is

A" (5,4,p) = ¢ (P) T (Mo

+ jz: In(Xp) [é;c)(p) cosmé + égs)(p) sinn¢]

m=1

3,0 KO0 ¢ ) KO0 [3,C0(p) cosme + 37 p) sinm], (41)

m=1
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vhere

172
A= [uoc p] ’ (42)
and Im(x), Km(x) are the modified Bessel functions of ordef n.
The boundary conditions, to zero order in toroidal corrections, follow

from Eqs. (7a), (7b), (8c), (8d), (9a), (9b) and (39). They are given by

Aég (a,é,p) = Aggn(a, éP), (43a)
aig( Py $,P) a;z:n( Py ®P) 43b
% pe=a ) % pua’ (43)

and the same two relations at p=b. Defining ééc)(p) and %;s)(p) to be the
Laplace transforms of (A(t)/a)lll cosm o(t) and (A(t:)/a)"l sinm a(t),
respectively, the boundary conditions at p=a and p=b, using Egs. (35), (37)

and (41), lead to the following algebraic system of equations:

a (p) = c (PI,(0a) + d (PIK (a), (4ta)
uo- - -
- 210 = e [e (I Oa) + dy(pIK, O], (44b)
8ro R - -
(en 52 - 2)b (8> = c (PITLOB) + d (PIR,(ND), (4c)
- by(p) = X [e (@)1 OB) + 3 (PR, OB)], (44d)

vhen m=0, and

o1 () = {Dipr 0a) + a{P (K 00), (452)
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_te

PPk + malPp) o [l 1508 + 4P (mRz00)]

n
(45b)
b{D ) = Dy vy + alV (p)r_(2b) (45¢)
-n bV - [P 08 + iV, 00)], (45d)

vhenm =1, 2, ..., and { = ¢, s. Alse, I‘(x), K&(x) are the derivatives

of I (x), K (x). The solution of the first algebraic system of Eqs. (44a)

- (44d) is
- M - g,(N
2Pt = 50 I .(P) ’ (462)
£,
b (p) = 52 1 (p) — (46b)
) 2n ‘¢ fo(x)
| - - 8r°
i ¢o(® = by(p) [(tn 52 - 2]k, 0) - K OB], (46c)
’ - - 8ro
’ d (p) = b (p) [(ln < - z]xb I,Ob) + IO(M))], (46d)
where
8r° 1
£ - (an =2 - 2]xaxb [Kl(xa)xl(xb) - 1,(0a)K; ()|
. M[KI(M)IO()\b) . Il(mxo(xb)], (47a)
8r

g, = [zn < - 2]w[xo(xa)11(xb) + Io(xa)xl(xb)]
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+ K ()T Ob) - I_Ma)K (Ob). (47b)

Similarly, the solution of the second algebraic system of Eqs. (45a) -
(45d) is

-(i) llo -(i) gn(x)

ay (p) = zp Fpo'(p) f.(x)' (48a)
(D py - 32 3D

b " (p) = 5= ( 48b
o n P) fn(k) ( )
Ve = v ) w kOB, (48¢)
d ) « o) W 1 OB, (484)

vhere

fn(” = A%Ah [ m+1(Aa)K I(Ab) -+1(Aa)1._1(kb)], (49e)

a0 = % [TOa)K, ;0b) + K OwI, , OB)], (49b)

andlll-l, 2’ 3, seoy i-c, S.

The inverse Laplace transforms of the coefficients given above are
determined from the sum of the residues at the poles of these coefficients.
The poles are computed at the zeroes of fn()hk) =0, vherem =0, 1, 2,
ooy k=0,1, 2, ... Since all the zeroes occur for imaginary values of
A, ve define the real quantities L by means of the relation th = i“hk‘
Then a pole occurs at Puk * ’“:k/"o‘ (cf. Eq. (42)) and the inverse Laplace
transform h_(t) of gm(X)/fm(X) is
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- .k
g (ia ) u o
h(t) = ) kK e ° &v), (50)
k0 £ B ptiay)
hiank

vhere f’n(z) is the derivative of fm(z) and 6(t) = 1, vhen t > 0, vhile
©(t) = O, vhen t < 0. Using the convolution theorem in the Laplace
transform domain, we obtain the following expressions for the coefficients

inside and outside the torus:

a (t) = Zaokuok(t), (51a)
k=0
by(t) = Zaokuok(t), (51b)
k=0
as’)(t) - ZAmkUnl(‘i)(t), (51¢)
)
b (o) - ZBnkUS;)(t), (51d)
k=0

vherem = 1, 2, ..., 1 = ¢, s, and

t
-t/T t'/x M
1 ok ok o , ,
Uok(t) = ;‘; e Je T Ic(t )de’, (52a)

t
-t/t t/T , u .
plr) - e M Ie w21 (t) (L) cosma(ts)der, (52b)
mk
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n "¢ a

2
2 %k

?

=

A 28, (o))
mk = 7 e Ei G )

B, = - — 20—,
mk ahkfl(chk)

e t
-t/T t’'/< u . ry\ R
U$8)(¢) « Lo  EK J e "k 07 () [Q(-t—)-] sinme(t’)dt’,

(52¢)

(53a)

(53b)

(53c)

Vhere n = 0, 1’ 2, ssee k = 0, 1, 2’ s Finally' the functions f.(ﬁ.),

gn(a) and the derivative f'.(u) of f.(a) are as follows:
f () = fo(ia)
n
=3 % [Jl(xo“o("ﬂ - Y1("0)"0("1)]

8r
-3 (‘“ 5 - 2]"0"1 ["1("o)"1"‘1) - Yl(xo)Jl(xl)]’

(54a)

£ s f %oy 1, Y Y
n(® pli®) = 3 3 [ p+1(%o) Yg-1(*1) - n+1(xo)Jn-1(x1)]’

g = £ (1a) = § [, (x)To0xp) - Y (x)Io(xp)]

(en T 2)x, [0, (k) - Yoex )3 (2],

]

Ba(® = Eptiw) = Fxy [1,0x Y, 1 (x) - Y x3 1Gxp]s
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(55a)

(55b)




of ! (o) . 1af’ (10) 3 (56a)

= £,(a) + %xﬁ [Jo(xo)Yo(xl) - Yo(xo)‘la(x-l)]

n 81‘0
S AR EA M AR ACRIACH
n 8ro 2
2 [(ln v 2)x1+1]x° [Jl(xo)yo(xl) - Y1("0)"0("1)]
n 8ro 2
- 7 (o0 52 - 2)ex roxr 2 - Yox 3 2],
of /(o) = ia fl;l(ia) (56b)
n xixl
=2 72 [Jm(xo)Ym-l(xl) - Ym(xo)"n-l(xl)]
x,x3

2 [Jn+1(xo)1n(x1) - Ym+1(xo)Jm(x1)]’

vhere X, = oa, Xy = o, m=1, 2, ... and Jn(x), Yn(x) are the Bessel

i
Nj=

functions of order m. Notice that «x are the zeroes of fm(“hk) = 0, for
m=0,1,2, ..., k=0,1, 2, ...

From Eqs. (36a), (36b), (35), (51la)-(51d), wve conclude that the zero
order vector potential inside the ring is equal to

u
Ag(ﬂo"t) = z% Ic(t) [2(2,]1 %: + %)

2 2
_psb(t) - %gagtzcosgg:agtzz (57a)

r
c
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2

enfo o (245" 2 2D cos 0 - wcon)|

+ ZAokuok(t) + Z
=

i Amk (f). [U(:l)t(t)c;;lt + Uﬁi’sinn#].
k=0

k=0

Outside the ring and inside the torus (i.e, p < a), it is equal to

Ago(pr#yt) = 22T (t) [2en 2 (57b)

- tn (1 +[9-§Q-]2 -2 %Q- cos (¢ - u(t))]

+ et + (LA;%?-]Z -2 2-:129- cos (¢ - «(t))]
. iaokuok(:) . i iA-k(f]n [062 (trcosme + U (FUersinng]
k=0 mei keO

and outside the torus (i.e, p > b) it is equal to

8r
g:t(Pv’vt) = ( _;2 - 2) Znokuok(t) (58)
=0

+ i inmk(% U(c)(t) cosmé + U(s)(t) simﬂ]
m=1 k=0

From Eqs. (52a), (52b) and (52c) it is easy to show that the time dependent
coefficients Uok(t), U(c)(t), U(s)(t) satisfy the first order differential

equations

1

. 1
Uok(®) + T

()
uok(t) -l I.(1), (59a)
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. 1 u N n

0ty t ey - ﬁ 210 (4] cosmatty (590
N u m- ..

93ty + -?:'; vl (e) - ;:I 2 1. (X2) sinma(t) (59¢)

vith initial conditions “ok(o) - U:E)(o) - U:i)(o) =0, form=1,
2, ...,k =0,1, 2, ... These differential equations are very useful vhen
the current ring moves and its equations of motion depend on the diffusion
fields, i.e., vhen the ring dynamics is coupled to the diffusion fields.
Then, the state vector of the system consists not only of the position and
velocity of the ring, but also of the diffusion coefficients Uok(t).
vy, 1), form=1,2, ..., k=0, 1, 2, ..., and its time
derivative is determined by the ring dynamics, as well as by Eqs. (59a)-
(59¢). Notice that it is much easier to solve in the computer a set of
coupled first order differential equations rather than a set of coupled
first order differential equations and the convolution integrals given by
Egs. (32a)-(52c).

Next, four exact identities will be established for the time
independent coefficients Amk’ Bmk' For a motionless, step function ring

current, i.e., wvhen Ic(t) - Io 6(t), Egs. (51a)-(51d) and Eqs. (52a)-(52c)

give
Y] = -t/T
0 ok
a(t) = 22T E Ay (1 - e ), (60a)
k=0
TR t/T
[ " Tok
by(t) = 52 T E B, (1 - e ], (60b)
k=0
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: : u n - -t/
aﬁc)(t) +1 al(ls)(t) - f% Io(%) ei.’z A.k[l -e “),(GOC)

=0

1] ] = ) -t/:t
b () + 1 b{P ey - 2 I, 9) elne }; B, (L-e “‘). (60d)
0
The Laplace transform of Ic(t) is ic(p) - Iolp, and ve have from Egs.
(46a), (46b), (48a), (48b):

"o 1 8N
a (p) I, 5 » (61a)
°PEM
u
Mo~ 1 _1
b o =521 b : m (61b)
- (e) - (s) Mo - ()" ima 1 BV
2% (p) + 12l (p) = 21 (a] elhe 2 f.(")' (61¢)
‘l
b(c)(p) +ib () = 2 I 9] imel _1_ (61d)
P £ o’

From the well-known theorem of Laplace transforms it follows that an(t) =

648 PE(P). Eas. (47a), (47b), (49a), (49b), give

¢im i’o(x ) =1, (62a)
- 8ro

£im g, (A) = &n — - 2, (62b)
m

gig L0 = m [}) . (62¢)
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g &0 = B)°

Application of the theorem just mentioned in Egs.

(61a)-(61d), in conjunction with Eqs. (62a)-(62d)
identities:

L
(<)
=
"
©
-
[+
| 5
!
N

1
:z: Aok =

k=0
®»

:z: Ba = 2 G%]n'

k=0

These identities have been verified by the computer for a thin as well as a

thick conducting wall. Substitution of these identities into Eqs. (60a)-

(60d) vhen t » =, leads to

4 2, () = 52 T, (en =2 - 2),

[¢]
48 Bo(0) = 7% Ty

- K1)

e [P+ 1aPm] =21, 1 9

8=

¢3p b8 + 1b{P )] - 2 1
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(62d)

(60a)-(60d) and Egs.
leads to'the folloving

(63a)

(63b)

(63c)

(63d)

(64a)

(64b)
elme, (64¢)
el (64d)




Vith the help of .these identities and Eqsf (35), (36a) and (36b), it is
easy to shov that, as t + », the zero ord?r vector potential inside and
outside the toroidal conductor (as wvell as inside the ring) becomes equal
to that of the current ring in the absence of thé.conducto¥, i.e., it
becomes equal to A;:t, due to the diffusion process. This conclusion
demonstrates the importance of the identities (63a)-(63d).

The magnetic and electric fields inside and outside the torus can be
computed from Eqs. (57a), (57b) and (58). Thus, the self-magnetic and
self-electric fields, i.e., the fields of the ring at its centroid p =

4(t), ¢ = «(t), are equal to

o - ) Y 2ay BT (650

m=1 k=0

* [— U;i)(t) cosma(t) + Ugﬁ)(t) sinma(t) ],

u
Bself(t) - -2 (1) M) 1 (65b)
o¢ 2R "¢ a2 1 (A[t})z
a
RN m a(t) m-1
+ Amk ( a ]
m=1 k=o

* [u:d‘:)(t) cosma(t) + u(:l)t(t) sinma(t) ],

B0 - - 5 10 foo S Feen (- (B8]

xc(t);:c(t) + zc(t)éc(:)

a’

T
t- (%)

u
0
T Ic(t)
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- Z %‘: 2 1.(t) - U (v)] '- (65¢)
=0

S0 Y ) o ()
m=1 k=o

- U::)(t) cosma(t) - U::)(t) sinnu(t)11,
vhere xc(t) = A(t)cose(t) and zc(t) = A(t) sine(t).

The last three relations, and in particular the Bzzlf component were
useful in providing an analytical model for the beam trapping that occurs
after injection in the modified betatron accelerator.

A typical example of the effect that the diffusion process has on the
ring dynamics, immediately after injection is shown in Fig. 2. The
numerical integration of the ring equations of motion coupled with the
diffusion fields was done for the parameters listed in Table I. Figure
2(a) shows the projection of the centroid orbit on the r-z plane that moves
vith the same toroidal angular velocity as the ring centroid. There is a
slowv (bounce) motion and, due to the presence of the stellarator windings
(i.e., strong focusing), the.e is also an intermediate motion. Both of
these modes are indicated in Fig. 2(a). Since there are six field periods
of the stellarator field in the range o < & < 2n, the electrons perform six
oscillations during one revolution around the major axis. To take into
account the intermediate motion that has been neglected in the diffusion

model presented in this paper, the resistivity in the code is computed
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using the skin depth that corresponds to the intermediate frequency and not
the actual thickness of the wall. The dots in Fig. 2(b) shov the positions
the beam crosses the r-z plane at 6 = 0'. The time difference betveen tvo
dots is equal to the period around the major axis, i.e., ~ 27 nsec, and
therefore the speed of the ring on the r-z plane can be inferred from the
relative position of the dots. Fig. 2(c) provides the relativistic factor
v vs. time and the reduction in y is obvious due to the energy lost on the
resistive vall and to establish the electromagnetic field outside the
torus. Another example is given in reference 13, wvhich refers to the beam
trapping in the modified betatron accelerator and is in good agreement wvith

the experimental results.
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VII;.ApproxilateAResults for a Thin Conducting Vall

The results presented in the previoui Sections are approximate in the
sense that they include only zero order toroidal corrections, i.e., are
valid only for small aspect ratio vessels. Otherwise, they are exact. In
this Section, the additional assumption is made that the conducting wvall is
thin. This assumption allows us to compute approximate expressions of the
zeroes o, of fm(“hk) = 0 (cf. Eqs. (54a), (54b)) and of the vector
potential and the fields.

Vhen the conducting wall is thin, i.e., (b-a)/a << 1, both X, ® oa and
X, = ob, where « is a zero of fm(a) = 0, are very large numbers and the
asymptotic expansions of the Bessel functions can be used in Eqs. (54a),

(54b). This is valid only up to some maximum value of m. Keeping terms up

to order 1/z, the asymptotic expansions of Jn(z), Yn(z) are: 16
l“z an? - 1
I, (2) ~ = [cos X, - =g;— sin Xn]. (66a)
Y (z) - |& [inx an? - 1 x] (66b)
n Z nz S n + 82 coSs n ’

vhere Xn =2 - (n + 1/2) n/2. Ve substitute these expansions into Eqs.

(54a), (54b). Then, the zeroes of fo(°bk) = 0 are determined from

tan(x1 - xo) = —Br , (67a)

vhile the zeroes of fm(amk) = 0 are determined from

2m
tan(x1 - xo) = ;;. (67b)

36




A more accurate expression for the zeroes of fu(“hk) = 0, correct to order

(l/xo)z, is derived in the Appendix, and is given by

2 1 9

RS TR Ty T

If X, >> 1, ve see from Eq. (67a) that |x1 - x°| << 1. Therefore,

tan(x1 - xo) =Xy -X, ® (b - a)a, and one of the zeroes is

172
%o = 8r : ’ (68a)
(tn —50- - 2]a(b - a)
vhile the others are given by
kn (68b)

%k " b - a’
vhere k = 1, 2, ... The small additive correction term 1/[ku(£n(8r°/b)
- 2)a] has been omitted in Eq. (68b). The zeroes of Eq. (67b) can be
obtained in a similar fashion, except when m is as large or larger than X,.
Letm=1, 2, ..., M, vhere M = Int[a/4(b - a)], and Int(x) is the integral
part of x. Then one set of zeroes of Eq. (67b) is approximately given by

172

2m
o = [5bTD] (692)

with an error of only a few percent when (b - a)/a < 10'2. For m as

specified above and k = 1, 2, ..., K, vhere K = Int[a/n(b - a)], the rest

of the zeroes are given by

kn
k5 -3 (69b)
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The ‘mall correction term [2m + (km)?/2]/(kna) has been omitted in Eq.
(69b). For values of m and k larger than ﬁ and K, respectively, the zeroes
should be computed numerically from Eq. (54b). Notice that the presence of
the terms (p/a)m and (b/p)ln in the series expansi;ns of thé vector
potential and the fields indicates that the large values of m become
important wvhen these quantities are computed close to the conducting wall,
vhere p/a and b/p become almost equal to 1 and more m-terms must be
included in the sums to converge within a prescribed accuracy. An estimate
of the minor radius Py within which the vector potential and the fields are
sufficiently accurate is determined by pi/a = [(b - a)/a]l/H. Since

(b - a)/a << 1, all the terms associated with (p/a)m, form = M + 1, M + 2,
... in the series expansions of the vector potential and the fields, have a
negligible contribution, provided p < Py A similar argument can be made
for the vector potential and the fields outside the torus. Their accuracy
is vithin a fewv percent when p > Py vhere po/a = [a/(b - a)]llH. Vithin
the distances di =a - p; and d° = P, - b from the inner and outer
conducting walls the zeroes (and, therefore, the vector potential and the
fields) cannot be computed analytically in terms of a simple expression.

In this case they should be computed numerically from Eq. (54b) and then
use the analytic expressions for the vector potential and the fields. As

an example, when (b - a)/a = 10'3

» then M = 250, K = 318, d./a = 0.027,
d_/a = 0.028, but when (b - a)/a = 1072, then N = 25, K = 31, d;/a = 0.1,
dola = 0.20. In the following, the various quantities will be computed to
order (b - a)/a, with the understanding that they are not accurate close to
the conducting wall. But in the limit when the ratio (b - a)/a tends to
zero (but o(b - a)/a remains finite), i.e., when the toroidal conductor
becomes a toroidal conducting shell, the distances di’ do are zero and the
results become exact, to zero order in toroidal corrections, everywhere

inside as well as outside and in the vicinity of the torus.
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-+.Under the assumptions stated above, the time constants Tk in Eq.

(53a) become

8t°
T, = 2 ':D[l.n + - z). . . (70a)
T - :—‘f"&, (70b)
oo = ;2’ (70c)
T
tmk = k%n'v (70d)
wvhere
uoa(b - a)a
L Y e (71a)
u o(b - a)?
Tpp = —'—ni—. (71b)

andm=1, 2, ..., k=1, 2, ... Therefore, there are three characteristic
time constants associated with the diffusion process. The "loop" diffusion
time Too is the slovest and determines the speed with vhich the external
field of the ring diffuses into the hole of the doughnut. This time is
present because of the toroidal geometry of the conductor. The "cylinder"
diffusion time L) and the "fast" diffusion time Tpp are associated with the
diffusion process in a cylinder and determine the speed with which the
field of the ring penetrates the conducting wall. Notice that, in the
limit of a toroidal conducting shell, any terms associated with the fast

diffusion time Tpp diffuse instantaneously at t = O outside the torus.
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This. explains thg origin of the electric field that is immediately
established at t « 0 outside the torus for the shell model (cf. statement
after Eq. (90) in the next section). On the other hand, ve knov from Eq.
(58), that the magnetic field does not diffuse instantaneously at t = 0
outside the torus.

Under the same assumptions stated above and to lowest order in

(b - a)/a, ve have the following approximate relations

8r

o l1b-a
Aoo = en 2 2 - T (72a)
2 b-a
A = (72b)
ok (kn)z a ’
1 2b-a
Ao "m -3 8 (72¢)
4 b -a
A. = 2-2a (724)
mk (kn)z a
1 b -a
Boo 21 + 8r° 2’ (73a)
6(£n < - 2)
2 -k b-a
B, = , (73b)
ok r, 2 a
(zn 52 - 2)km
1 4b-a
Buo “m*3 a (73)
4 g-1zk b-a
Bmk - — =2, (73d)
(km) 2

form=1, 2, ..., k=1, 2, ... The relations (73b), (73d) vere derived
directly from Eqs. (56a), (56b), while the relations (72b), (72d) were
derived with the help of Eqs. (73b), (73d) and the relations go(uok) =
-1)* (en Br /a - 2), gylay,) ® K, form=1, 2, co., k=1, 2, ...
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Finally, Aoo’ A o’ B

- B o Vere derived using the identities (63a) -
(63d).

00’ “m

As mentioned above, the terms associated with the fast diffusion time
Tpp Vary in time on a much faster time scale than the terms associated with
the times %00 and L% If the ring current Ic(t) and its position (4(t),
a(t)) vary slovly within a fev e-folds of Tpp? then the part of the vector

potential (or the fields) which is associated with <

Fp SOP be simplified

considerably.
Pirst, let us consider the self-magnetic field. Substitution of Egs.
(70b), (70d) and Eqs. (72a) - (72d) into Bqs. (65a), (65b) leads to the

relations

pself ) . 1 Z [1 _amb - a) (em]“‘“ (74a)

op a

* [—U;:)(t) cosma(t) + Uég) sinmu(t)]

o t - -,‘t—'- K2

+ l-"? b —* Z ;1— J h:elf(t, t-t'y e P dr,
a Kol FD

u
Bself(t) - =21 (1) A(t) 1
oé 2n "¢ a2 ) (A[t])z

“\a
Y (-Zmbog) (Auz)""l (74b)

*a - 3 a a

* [Ulflz)(t) cosma(t) + Ugcs))(t) sinmu(t)]
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vhere

u .
h:elf(t, ') = 52 I (t") ’-’%—1 (75a)

]

X)) cop (ae) - aieny) - 2 HOHED

=g

[1¢

2
a__ ’
[1 + (.A_(.t.)_g.(ﬂ)i -2 Q‘%%QL)- cos (a(t) - u(t'))?
hSeE(, 0y - 2 1 (vr) LD (75b)
1 - (—(Q-M] ] sin (a(t) - a(t"))
[1 . ( t A t ] -2 M)%(l-)- cos (a(t) - u(t'))]}-.

If Ic(t - t’), 8(t - t’), a(t - t’) vary only slightly as t’ varies within
a fev e-folds of Tpp? they can be replaced by I c(t), 4(t) and a(t), except
in the sine in Eq. (75b) we should set a(t) - a(t - t’) = «’(t)t’ to get
the lowest order contribution. Here «’(t) is the derivative of a(t).

Equations (74a) and (74b) then become

ele(r) « 1 Z (-mbos) (Am)m-l

a a
m=1

+ [-u U5 (1) cosma(t) + ULE)(t) sinma(t)]
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@ __t_k
* S DY 4 D , 26a
ZIF 1m)e (76a)
Bself(t) .- 27 (t) a(t 1
o¢ K "¢ o (Ait])i

a(t) 1
+ 3 L=y )
n ) a(t)
P" ( a ] ]
[ - Lkz
T
* 1_2 1-e D | (76b)
k=1 K

After a few e-folds of Tpp? the sum over k becomes equal to n2/6 and there

is a residual contribution in the self-magnetic field from the fast
diffusing terms. Since (b - a)/a << 1, Egs. (76a), (76b) indicate that
this contribution is small unless the ring is close to the conducting wall.
But in that region, these relations are no longer valid and, therefore,
they provide only a hint as to the significance of the fast diffusing terms

vhen the ring is close to the conducting wall.
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-.Prom Bqs. (65c), (70b) (70d) and Eqs. (72a) - (72d), and to lovest

order in (b - a)/a, the electric field at the ring centroid is given by

5 (o fn e be emft- (82)]]

Eself(t) -
e s

=l

xc(t)ic(tL-r zc(t)éc(:)

U ; az
I (t —
2|t ¢ 2
A(t)
1- (a )
{Uoo(t) R 222: U(c)(t) cosma(t) + u(’)(t) sinma(t) ]]
M=l
L F-‘l I (t) + hSelf(, t)] (77)
1» 4n “e * T '
¢ .2
o I S
u 2 ¢
- -1-1; Z% 221 I(Y) - k';lTD I I (t-t')e b de’
tr .2
® t - =k
2
g Wy hself(t t) - hSeE (e, et )e 4],
D 4 T
vhere
self ' t)a(e’
hSelE (1,00) w22 1 (t0) —U—L-)- (78)
cos [a(:) - u(t')) - AOXE)
* 8_
’ i [ :

a a
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thn.Ic(t). 4(t), «(t) vary slovly, in a similar fashion as for the self-
magnetic field, we obtain the simplified equation for the self-electric
field

H, . ( 5
Eelf(t) = - 521 (1) [!.n 2 .3+t [1 - (& ]]
c

*c“”"s“’gie“’és“’

o

PRI ———E
1. (A

= m .
‘ 2—11; U () + 2 2 (%9-] .ng)(t) cosma(t) + U::)(t)inla(t)]

m=l

u I (t) -t/ a(t)
SR ayo, ) |y, e : (79)

vhere 03 (z, q) is the theta function of order 3,16 i.e.,

0y(z, @) = 1 + 2 Z qkz cos 2 k z. (80)
k=1
Notice that 93 (0, q) can be expressed in terms of the complete elliptic
integral of the first kind K(m), i.e., 6,(0, @) = [2 R(m)/x]'/2. Here, m
is related vith the nome q by the relation q = exp[-n K(1-m)/K(m)] and when
q tends to 1, then m tends also to 1. VWhen t/t?D << 1, the nome q is very

close to 1, and in this case K (1-m) = K(o) = n/2, so that

-t/
[2R(m)/n1Y? = [n/en(17q)11/2. Therefore, 850, e m, [lt/(t/tm)lllz,

i.e., the self-electric field is proportional to Ic(t)['lrl,l)/tlll2

vhen t/1:FD
<< 1. If the ring current is a step function of time, i.e., Ic(t) =
Ioe(t), then the self-electric field is infinite at t = 0 (actually, it is
infinite everywvhere inside the torus). This result is not surprising if ve
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take. into account that the vector potential rises in time instantaneously
at t = 0, because the ring current does so. When t/tl,D >> 1, ve have 93(0,

~t/Tpp self
e ) =1 and the fast diffusing part in Eeo . _provides a residual

contribution.
Finally, consider the electric field outside the torus, i.e., vhen
p 2 b. From Eqs. (4c), (58), (59a)-(59c), (70d) and Eqs. (72a)-(72d) ve

see that, to lovest order in (b-a)/a, it is given by

8ro
out 1 | p__ 2
Egy (Pr#yt) = 5= u_ (v) (81)
21b 8r° oo
'_n —— 2
b

o]
Ln 3 - 2
8r t’ .2
g tn=2-2 u ¢ k 2 * " T .
--T;——B'liL—— 722 (-1) I(t)—t__ I (t-t')e dat’
en 2 -2 ka1 FD
@ t - L:'-kz
1 % Tep
-T; Z 1) h (pyd,t) - —F; ho(9109t‘t')e dt’ |,
vhere
ho(py#,t) = 52 I (t) —-‘-—’- (82)
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cos (¢ - c(t)) - %

1+ (b—:.gqi-z‘%‘.g-cos [o-c(t))

*

Vhen Ic(t), 4(t), «(t) vary slowvly, Eq. (81) silp.iif:les to-.

8r
out O — -2
Bao (Pr#t) = 7 —g— U, (V) (83)
tn -ro -2

+ 2 Z [h]- (U.(‘g)(t) cosmé + U:z)(t) 81!‘!!0)

o
m=l
8t°
-t/'tm 1 en — -2y
o
-0 oo )b g 1)+ botaD)
Zn % - 2
vhere 94(2, q) is the theta function of order 4,16 i.e.,
=
Kk k2
64(2, q) =1+ 2 (-1)" q~ cos 2kz. (84)
k=1

Notice that 6,(0, q) = [(1-2)'/% 2 R(m)/m)1/2. When t/y

is very close to 1 and in this case, K(m) = (1/2) ¢n[16/(1-m)] and 2 K(m)/n

<< 1, the nome q

e« p/¢n(l1/q). Therefore, we have

172
u2

-t/<T T 2(t/ Tton)
FD] «2 R FD

(-] e
t/ Tep '

AR

(85)

i.e., vhen the ring current is a step function of time, the electric field

is zero at t = 0 outside the torus. On the other hand, when
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~ -t/ gy
t/tPD >> 1, then 04( 0,e ) = 1 and the electric field reduces to

that computed from the shell model. It appears, therefore, that the fast

diffusing part in Bz:t contributes the exact amount needed for E::t to

out
6o

the shell model when the conducting wall is thin.

To calculate the wall current density J::ll(p,Q,t) = dEg:n(p.¢,t): the

vanish at t = 0, but very quickly E increases to the value predicted by

electric field inside the conductor is needed. From the continuity of the
electric field at the inner and outer surfaces of the conductor and vhen
t/'l:'pD 1, Eggn varies from a very large value at the inner surface to a
very small value at the outer surface. However, vwhen t/1:PD >> 1, but t/'cD
<< 1, and in the special case of a thin conducting wall, it is easy to show
from Eqs. (57b), (72a), (72c) and (83) that the electric fields at the
inner and outer surface are approximately equal to each other. 1In the
extreme case of the shell model, they become exactly equal to each other,
wall

and the surface wall current density is equal to Jes ($,t) = a(b

aﬁ?..f“(a-*-t), vhere Eggt(a.#.t) is given by Eq. (83). The surface wall

current I:all(t) is computed by integrating J::II(O,t) over the poloidal

angle ¢.
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VIII. Tvo Applications for the Shell Model
Vhen (b-a)/a tends to zero but ¢(b-a)/a remains finite, i.e., for the

shell model, Bgqs. (57a), (57b) and (58) simplify considerably, i.e.,

Kootorh®) = 210 [ofen -0 §) - (f-)

+ ln(l . (’A%l]z -2 BACY) oo (O-c(t)]] (86a)

a a
(zn -8—r— - 2] U (t) + i :f (f]. (U.(l:)(t) cosmé¢ + U ::zt) sinl#),
n=l
inside the ring (p’ < rc),

AR (o0 t) = ;% I (1) [un - (86b)

ven (1o ()7 - 2 240 canfy - w0))]
a a

8r
. (ln 2. 2 U (1) + Z (‘1 u‘°)(t) cosmé + U:?(t) simu]

m=1
outside the ring but inside the torus (p € a), and
8r
aout 0
90 (pyéyt) = ( T - 2] Uoo(t) (87)

m
* Z % (%) (U:,:;)(t) cosmé + U:z)(t) simu],
m=1
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outside the torus (p 2 a), vhere p’ is defined by EBq. (27b).
First, consider the case of a motionless ring, i.e., 8 and « are
constant, and its current is a step function of time, i.e., Ic(t) - Io

&(t). From Eqs. (52a)-(52c) we have:

u -t/
(*) 00
U, (1) = 52 10[1 - e ], (88a)
-2 ¢
(c) (s) o~ 2\" _ima D
U + 1) - 21 (5) e [1 - e . (88b)
and the vector potential becomes:
in "o 81'o 3 '\2
Aeo(o.O.t) = in 10[2 [ﬂ.n a- - 5] - (f:] (89a)
8r -t/% A —t/'l:D 2 a -t/1:D
- 2(2.n _a£ -Z)e %0 , e&n [1 + (ff e ] -2 ?— e cos(¢-a)
inside the ring (p’ £ rc),
in llo 8r°
Aga(pr#it) = 22T [2 (en =2 - 2) (89b)
8r, -t/ [ (.26 -t/'tn)z s % . )]]
-2 |len — - 2]e en |1 e -2 e cos o
(" a ] + * 2 a2
outside the ring but inside the torus (p £ a), and
u 8r
out 0 0
Aeo (pyé,t) = Zi 10[2 (f.n ;,— - 2) (90)
8r° -t/‘too A —t/tD 2 A -t/1:D
-2 (f.n ry -Z)e + ln[l + [-; e ) -2 ° e cos($-a)
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outside the torus (p > a). Notice that although Aggt(p,o,t) is zero at t =
0, its partial time derivative is not zers at t = 0, because, as explained
in the previous section, the fast diffusing terms which render the electric
field zero at t = 0 outside the torus, are nissiﬁé in the Qhell model.
Also, notice that at t=o the vector potential is the sum of the external
vector potential of the ring and its image, but for t>>tbo only the vector
potential of the ring remains present.

As a second application, consider the case in which the ring moves on
a circle, i.e., 8 is constant, a = wt, and its current is a step function

of time, i.e., Ic(t) - Io ©(t). From Eqs. (52a)-(52c) we have:

-t/7

H
U (1) = 52 10(1 -e °°], (91a)
t
-m -
(c) ¥ (:)m cosmwt + oty sinmowt - e D o1b)
Ur-(t) = I |= = ’ (
mo 7Zn o 1. (me)Z
—m %D
(s) "o A" sinmat - th cosmwt + mtD e
UM(t) = 5= 1 |= ’ (91c)
mo 2n o(a) 1+ ("“D)z
and the vector potential becomes:
in Ho 8ro 3 2
A (pr#yt) = 22T [2 [en 7 - 5] - (&] (92a)
8r -t/7T 2
-2 jegn —-2] e °°+ﬂ.n 1+(;LA -ZLcos(Q-wt)
en 52 - 2 e () - 2 % concrun)

2
1 pd pd
- ———n |1 4+ -2 cos(é-ut)

1+ (la»)‘l:D)2 [ ( (52) a2 )
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- ¢n (1 + (:% e -utb)z -2 :TA- e"—t/tDcOS(O-ﬂt))]

. -t/
20, 22 sin(4-ot) £ e D gine
- Artan 2 ~ Arctan a__ ”
14 (mb)i [ 1 - 22 cos(4-wt) 18 ™ se
a
a
inside the ring (p’ ¢ rc),
AP Gty =221 [z 2o 2] (92b)
6 P ® =K o n o
8r -t/ 2
- Z(Ln -a—° - 2)e %0 . ¢n (1 + (;LZA-) -2 :% cos(#—mt))
2
1 4 1
- enll + [B2] -2 2 cos(é¢-t)
1+ (a\‘tD) [ ( (32) a2 )
s Vo, e Y
- l’.n(l + (fi e ] -2 ;‘Lz e COS(F‘“))]
-t/
Zme 2% sin(¢-wt) 2% e k. sin¢
- ——)2- [Arctan a_gA - Arctan & Ve ]],
1 ( 1 - cos(¢-uwt)
* %% a2 1- Eeze cos¢
a

outside the ring, but inside the torus (p < a), and

A (p, 4, t) = ‘,:—‘," 10[2 (en ?’- - 2) (93)
o (a2 2] 0 e (&) - 2 2 cosqaan)
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- ;;7 [t.n (1 + (%) 2-- 2 % Eos(#-ut)]

- &n (1 + (% e-t/tb) -2 %e_t/tn cos(#—«»t))]

2w, £ sin(e-at) e sing
- __2 Arctan 2 - Arctan -t/ ]]’
1 + (mD) 1 - ; cos(¢-ut) 1 - 8 e tDcos#
'y

outside the torus (p 2 a). There are two extreme cases of interest:

i) vhen Wty << 1; then the vector potential is the same as that of a
motionless ring. 1i) when oty >> 1; then there is diffusion of the terms
associated with the loop time Too’ but the image fields do not dissipate to

zero, but they follow in phase the circular motion of the ring.
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IX.:.Conclusion

The diffusion of the self magnetic field of a beam inside a toroidal
conductor is governed by three different diffusion times. The loop time
Too is responsible for the diffusion of the fieldé into the hole of the
doughnut and, after a fev e-folds of the fast diffusion time, the time
behavior of the wall current is completely determined by oo The
"cylinder" diffusion time L) is responsible for the dissipation of the
image fields which are present initially, but they vanish after a few
e-folds of tb’ if the ring current does not vary with time. Finally, the
fast diffusion time is responsible for the electric field outside the
conductor to be zero initially, but it acquires approximately the value
associated with the shell model after a fev e-folds of Tpp-

After a few e-folds of the loop time and if the ring current does not
vary vith time, the vector potential becomes equal to that in the absence
of the conductor. 1In addition, to zero order in the toroidal corrections,
the radial component of the self-magnetic field, which is responsible for
the beam trapping, is independent of the loop time. Therefore, the time
scale of the trapping mechanism should be independent of Too" Reliable
results close to the conducting wall can be obtained only by numerical
computation of the poles and by including a very large number of terms in
the series expansions of the vector potential and the fields. But in the
extreme case of the shell model, the results are exact everyvwhere inside as
wvell as outside and in the vicinity of the torus. This model provides
quite an accurate description of the diffusion process for a toroidal
conductor with a thin wall, except during the first few e-folds of Tpp?
since the effect of the fast diffusing terms is not included. Due to the
simplicity of the shell model, it is rather easy to compute the first order
toroidal corrections. These results will be reported in a future
publication.
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Appendix
An expression for f-(a), given by Bq; (54b), vill be derived here,
correct to second order in »/x,. Using the multiplication theorem for the

Bessel functions, we obtain the relation 16

2 1
n xox1 fn(a) . Jn+1(xo)Yn-1(x1) - Yn+1(xo)J--1(x1) (A1)

= kK ,2 2 .k
- e)- ; "-FP_ (L;;_fa— xo) [Jnd(xo)yn-l-fk(xo) - Y-d(xo)J-_hk(xo)]-

Vith the help of the identities

Jo(x5) Y£+1(xo) - V(%) Jp (%) = - i%:’ (A2a)
Z, 1(x) + Z,,,(x) = ,2‘—:- 2,(x,), (A2b)

vhere Zt(xo) is either Jt(xo) or Yl(xo)’ we can shov that

Ina1(®o) Ty 1(%g) = Yo g (%) T 1(%5) = Zﬁ i%;’ (A32)
Ime1(Xg) Tp(xg) = Yo (%) Jp(x,) = E%;’ (A3b)
Jm+1(xo) Yﬁ+2(xo) - Yﬁ+1(xo) Jn+2(xo) = i%;’ (A3c)

and for ¢ = 1, 2, ... we can also show that
Ine1$%0) Ynoae-1%0) = Tna1(Xo) Jgis40-1(%0)

2 2(20-1)(me20) . (L
T o [’ X, * OL 3)’ (Aba)

o

Jm+1(xo) Yn+4£(xo) - Ym+t(xo) Jm+lot(xo)
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no xo o

Jll+1(xo) Yl-»lt(’.-o'l(xo) - YlM-l(xo) Jl+42.+1(xo)

2 [4e(ms2¢s+1 1
& ——(—)-xo R oL‘ 3]], (Adc)
o]

Ipe1(%0) Toia042(%0) = T 1(%0) Jpg042(%,)

o 2 [1 o 48(20+1) (m42¢+1) (m+2842) + 0 _l_)]. (A4d)

X " 2 4

() (]
Therefore, ve conclude that

m 2 2

a) 1 2m - a
= f (o) = = - sin |[——a—x
(E) X, ®m X, (b 2a2 o)
® 2 2 2k+4

2 k (k+l)(m+k+2) - a
X Z (-1 ket Es2-x,) (A5)

(-] 2a

k=0
® 2 2 4e+1

b 2(2¢-1)(m+22) (m+22+1 Gl__:_g_ x )
t 2 (42+1)1 282 ©

0o A=l

[ ] 2 2 4'.4»1

b4 2(42+1)(m+22+1)(m+2¢+2) (b -a . )
- " 2 (42+3)1 232 (]

o £=1

vhere terms of order 1/x3 and higher have been omitted. A straightforward

and lengthy calculation leads to the relations

k (k+1)(m+k+2) 2k+4
Z -1)" SGanT 2 (Aba)
k=0
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caE (e Yetne - e)eor s,

:E: zgzz-1%£::§§¥5n+zz+1) g4t+1 (A6b)

L=1

_ £(2¢+1)(m+22+1) (m+2£+2) 4243
(4L+3)1 z
=]

-

A --Der PP Yotne

S DB (e Peos =

Substituting Eqs. (A6a), (A6b) into Eq. (AS), we conclude that

2 2

O Law-- - 6-HESD)

2a
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Ve see that the zeroes of f.(c) are given by the r¢” . ‘on

tan (%gi xo) = A/B, (A8)

a

vhere

s. .1 2 _ 222 1 1(3"‘5) 2 az)z)

- g*z[bu ) xo’f(""f)_x_of_* _2.7-

e D) 12y - kDD B
2) 5, 7 2 7 2) U2

4

2
1 -~ a 2
* (b 282 ) %o *
correct to order (n/xo)z. If (b - a)/a <<1, and X, >>1, the relation above

simplifies to
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Table I. Parameters of the run shown in Fig. 2

Torus major radius T,

Torus inner minor radius a
Torus outer minor radius b
Strong focusing radius Po
Strong focusing current Isp
Strong focusing Periodicity
Vertical magnetic field Bzo
Toroidal magnetic field Beo
Beam relativistic factor v
Beam minor radius r,

Beam current Ic

Vall resistivity

Intermediate frequency o,

60

100 cm
15.2 cm
15.217 cm
23.4 cm

24 kA

6

26 Gauss
4000 Gauss
1.69714

3 om

0.5 kA
8.84 mQ cm

1.8 x 10°

1

sec”




>

Fig. 1 System of coordinates
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Fig. 2 Beam centroid orbit [(a) and (b)] and relativistic factor vs. time
[(c)] from the numerical integration of the ring equations of motion

coupled with the diffusion fields.
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